A new strategy for developing meningitis vaccines

A new strategy for developing meningitis vaccines
24-May-2012

Bacterial meningitis is an infection of the meninges, the protective membrane that covers the spinal cord and brain. Children, elderly patients and immunocompromised patients are at a higher risk for the development of severe bacterial meningitis. Recently, researchers at the University of Adelaide in Australia sought to identify new vaccine targets in Streptococcus pneumoniae, which is the most common cause of bacterial meningitis in the world. Led by Dr. Abiodun Ogunniyi, the research team developed a new method of screening for bacterial genes that are expressed during meningitis in brain tissue.

Using a mouse model system, the researchers examined mice infected with two different strains of S. pneumoniae. They identified a protein known as glycerophosphate oxidase, and showed that this protein was critical for the progression of bacteria from blood to brain in mice. They went on to show that a vaccine against glycerophosphate oxidase protected mice from invasive pneumococcal disease. Their results not only suggest a new strategy for immunizing against Streptococcus pneumoniae, but also provide a blueprint for discovering additional genes from other pathogens contribute to meningitis.
###

TITLE:

Identification of a novel pneumococcal vaccine antigen preferentially expressed during meningitis in mice

AUTHOR CONTACT:

Abiodun Ogunniyi
Research Centre for Infectious Diseases, Adelaide, SA, AUS
Phone: +61 8 8303 7550; Fax: +61 8 8303 7532; E-mail: [email protected]

Press Contact: Sarah Jackson
[email protected]
Journal of Clinical Investigation

Webinar

Using AI and RWD to Uncover Rare Disease Insights, Accelerate Commercialization and Improve Patient Outcomes

Wednesday, March 24 | 2pm ET / 11am PT

Learn how IPM.ai transformed real world data into real world insights to assist Audentes in their development of AT132 for the treatment of XLMTM. The session reviews how IPM.ia and Audentes collaborated to uncover the XLMTM patient population.