International Research Studies Underscore Utility, Robustness of 454 Sequencing Systems for Characterizing Blood Cancers

PENZBERG, Germany--(BUSINESS WIRE)-- Results from a series of studies presented this week at the 52nd American Society of Hematology Annual Meeting in Orlando, Florida highlight the value of high-throughput sequencing for in-depth characterization of blood cancers, including leukemia and other hematological malignancies. The research studies used the Genome Sequencer FLX and GS Junior Systems from 454 Life Sciences to perform targeted resequencing of known cancer-related genes, such as KRAS, RUNX1, EZH2, and TET2, in order to detect genetic mutations associated with the disease. By sequencing these genomic regions in large numbers of leukemia samples, the researchers were able to successfully identify novel mutations, as well as stratify individuals into unique disease risk subtypes.

Blood cancers such as leukemia and other myeloproliferative disorders cause rapid, abnormal growth of blood cells and are known to consist of a broad spectrum of subtypes. Identifying the unique molecular genetic profile of an individual’s cancer is critical for disease diagnosis and prognosis, as well as detection of reemergence of resistant clones during or post therapy. Currently, a variety of techniques are available to characterize leukemia types, including traditional Sanger capillary sequencing, cytogenetics, and immunohistochemistry, but are expensive, time-consuming and, in some instances, fail to offer the depth of analysis or sensitivity enabled by next-gen sequencing. “The number of molecular markers used to categorize myeloid neoplasms is constantly increasing. Amplicon-based next-generation sequencing is a suitable method to accurately detect and quantify the variety of molecular aberrations with high sensitivity (1),” explained Alexander Kohlmann, Ph.D., Head of the Next-Generation Sequencing Group at the MLL Munich Leukemia Laboratory, and coauthor of 10 studies presented at this year’s conference.

The MLL Munich Leukemia Laboratory is leading the way in adoption of next-generation sequencing to profile blood cancers. “Through our extensive research and development work using 454 Sequencing Systems, we’ve found that the technology has potential for mutation analysis in daily routine operations, and we have developed assays targeting known leukemia-associated biomarkers such as RUNX1 or TP53 for detection of molecular aberrations” explained Prof. Torsten Haferlach, co-founder and CEO of MLL.

The MLL is also leading an international research study to investigate the reproducibility of 454 Sequencing System assays across sites, findings of which were outlined at the conference. The IRON study (Interlaboratory RObustness of Next-Generation Sequencing) investigated the use of 454 System targeted amplicon resequencing to identify mutations in known disease-associated genes from chronic myelomonocytic leukemia (CMML) samples. An international consortium of 10 laboratories from six countries sequenced and analyzed the commonly mutated TET2 gene in the same 18 samples with the GS FLX System. Results showed a high-concordance in mutation detection across all sites, including the robust detection of novel variants which were undetected by Sanger sequencing. The sensitivity to detect rare variants present in as low as 1-2% frequency, compared to the 20% threshold for Sanger-based sequencing, together with the systems’ high-quality long reads and speed, make it particularly interesting for future clinical applications.

“We are pleased by the initial results of this research study, which reiterate the findings of robustness and sensitivity from previous multi-site studies on HLA genotyping and HIV variant detection,” said Christopher McLeod, President and CEO at 454 Life Sciences. “With the rapid uptake of the GS Junior System in the market, we are pleased to work together with the growing community of researchers to develop a menu of target-specific assays for a variety of future medical applications.” Early next year, the company plans to launch its first target-specific assay for Human Leukocyte Antigen (HLA) genotyping on the GS Junior System and GS FLX System.

For more information on 454 Sequencing Systems, visit www.454.com

About Roche

Headquartered in Basel, Switzerland, Roche is a leader in research-focused healthcare with combined strengths in pharmaceuticals and diagnostics. Roche is the world’s largest biotech company with truly differentiated medicines in oncology, virology, inflammation, metabolism and CNS. Roche is also the world leader in in-vitro diagnostics, tissue-based cancer diagnostics and a pioneer in diabetes management. Roche’s personalised healthcare strategy aims at providing medicines and diagnostic tools that enable tangible improvements in the health, quality of life and survival of patients. In 2009, Roche had over 80,000 employees worldwide and invested almost 10 billion Swiss francs in R&D. The Group posted sales of 49.1 billion Swiss francs. Genentech, United States, is a wholly owned member of the Roche Group. Roche has a majority stake in Chugai Pharmaceutical, Japan. For more information: www.roche.com.

(1) Kohlmann et al. J Clin Oncol. 2010; 28:3858-65.

For life science research only. Not for use in diagnostic procedures.

454, 454 LIFE SCIENCES, 454 SEQUENCING, GS FLX and GS JUNIOR are trademarks of Roche.

Other brands or product names are trademarks of their respective holders.



CONTACT:

Roche Diagnostics
Dr. Burkhard Ziebolz
Phone: +49 8856 604830
Email: [email protected]
or
454 Life Sciences Corporation, a Roche Company
Dr. Ulrich Schwoerer
Phone: 203-871-2300
Email: [email protected]

KEYWORDS:   United States  Europe  North America  Florida  Switzerland

INDUSTRY KEYWORDS:   Stem Cells  Health  Biotechnology  Clinical Trials  Genetics  Medical Devices  Oncology  Pharmaceutical  Research  Science

MEDIA:

Logo
 Logo